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1. INTRODUCTION
Process-centric workflows focus on control flow, often ab-

stracting away data almost entirely. In contrast, recently
proposed data-driven workflows treat data as first-class cit-
izens, e.g., the business artifact model pioneered in [16] and
deployed by IBM in commercial products. Data-driven work-
flows have become ubiquitous in a wide array of application
domains. Their system architecture may range from totally
centralized to fully distributed. While multiple-peer work-
flows have been extensively studied in the process-centric
case using finite-state models, little formal research has been
done on collaborative workflows centered around a database,
which have infinitely many states (see related work).
In a previous paper [6], a model of collaborative data-

driven workflows was introduced. In a local-as-view style,
each peer has a partial view of a global instance that re-
mains purely virtual. Local updates (insertions and dele-
tions expressed as datalog-style rules) have side effects on
other peers’ data, defined via the global instance. The paper
studies the ability of a peer to carry out runtime reasoning
about the global run of the system, and in particular about
actions of other peers, based on its own local observations.
Serious restrictions are imposed to enable such reasoning.
In the present paper, we introduce a richer model for col-

laborative data-driven workflows based on the concept of
“abstraction”, and focus on the problem of explaning to a
particular peer what is going on in the general system, in
particular what the other peers are doing. From a data
viewpoint, this is simple: the peer sees an abstraction of the
global data at each instant in time. But we would like to also
explain the events (that typically result in data updates) to
the peer. At a global level, such an event is a rule instantia-
tion. To explain the event, one can recursively explain how
the positive and negative atoms in its body were obtained.
(One can think of that as the provenance of the event.)
This provides an explanation of the event (that may not

be unique). At the peer level, we will use an “abstraction of
the explanation”. This will ultimately allow us to build for

.

a particular peer a customized workflow, that may be seen
as the “abstraction of the global workflow”.

2. ABSTRACTION
In a collaborative workflow environment, it is useful to

explain to each peer the work of other peers. This can be
trivially done by providing the full specification of the sys-
tem. However, this is often undesirable, because (i) peers
may not wish to fully share their data and specifications and
(ii) peers may prefer not be overwhelmed with details about
other peers. Instead, one can equip each peer with an ab-
straction that provides partial information of interest about
the data that is shared and actions of the other peers.
A collaborative schema therefore specifies the abstraction

that each peer sees. The abstraction of a relation for a given
peer allows (i) hiding tuples (selection), (ii) hiding attributes
(projection), and (iii) hiding data details (homomorphism).
The third item is a particularity of the model. A homor-
phism (for a specific peer) hides certain information. For
instance, it may replace the exact name of a product by
its category, e.g. electronic piano and smartphone by elec-
tronics. Most interestingly in our context, it may hide the
identity of a peer, so that a specific referee may simply be-
come “referee”.
We adopt an important restriction from [6]. Each relation

has a key and an abstraction either hides entirely a relation
or maintains the key. We can hide data details selectively on
some columns, but never on the key. It is important to ob-
serve that (notably because of the presence of key), the peer
does not perform view updates but direct updates to the
global database. A standard chase is performed to take the
key constraints into account [5], which may result in prop-
agating the update to other peers because of the functional
dependencies as well as the implicit inclusion dependencies
between the global instance and the local views. (The im-
plementation of such a propagation without recourse to a
central authority with full access to the entire data is the
topic of on-going work.)

3. EXPLANATION
In this section, we introduce the notion of explanation.

This is a rather delicate process. Due to space limitations,
many details are omitted.
Consider the trace τ = e1, ..., en of actions from some

start instance. We define the notion of subtrace as any sub-
sequence that is actually a run. There are different ways of
explaining how an operation ei in τ was made possible. We
consider primarily two: (i) find some minimal subtrace of τ



that ends with ei; and (ii) find some minimal subtrace of τ
that ends with ei, “mimicking things that actually happened
in τ” (to be explained further).
We study the problem for these two definitions, in partic-

ular, their semantics, algorithmic aspects and complexities.
For (ii), we will say that such a subtrace τ ′ that ends with

ei is “consistent with τ” if for each operation e in τ ′,

• (no-effect updates.) An update in the explanation has
no effect, iff the corresponding update in the original
run has no effect as well.

• (same cause literals) A literal used in some action in
the explanation held continuously since some opera-
tion e′ in τ ′ and not before, iff this was also the case
for the corresponding literal in the original run.

With this definition, τ ′ explains what actually happened in
the original trace in order to activate ei.
Consider some peer P and a given explanation. The peer

P sees an abstraction of the explanation, that is, a sequence
of abstractions of operations. Thus, P sees only some of the
data and portions of the rule instantiations from the actual
workflow. In particular, some events may have no effect
visible by P, but may eventually lead to some visible side
effects. It should be observed that the resulting abstraction
may not be the run of a real workflow, using valid rule in-
stantiations: some rules may include logical contradictions.
For instance, suppose that a rule says that if two managers
from Human Resources disagree on hiring, the candidate is
marked as “conflict”. Such a rule instantiation at Human
Resources and a possible abstraction seen by peer Bo may
be:

@RH: marked@RH(Bo,conflict)
:- forHiring@RH(Mary,Bo),

not forHiring@RH(Paul,Bo)
@Bo: marked@RH(Bo,conflict)

:- forHiring@RH(manager,Bo),
not forHiring@RH(manager,Bo)

Here the abstraction is hiding the names of the managers
who are handling Bo’s hiring. Both names are mapped to
the same value, namely “manager”.
This may seen nonsensical logically. But one should con-

sider it in the view of abstraction. For instance here, the
term “manager” should be understood as a shorthand for
some x such that h(x,manager) where h is the homomor-
phism for Bo. So there is actually no contradiction.
We study the semantics of explanation. Ultimately, our

goal is to be able to synthesize, given the global workflow
and the abstraction of a particular peer, a workflow that
explains the process as seen from that peer. Of course, we
want this local workflow to be reasonably simple, to describe
all possible runs (as seen from that peer), not to leak infor-
mation, and to be as close as possible to what may actually
happen.

4. RELATED WORK
Although not focused explicitly on workflows, Dedalus [7,

12] andWebdamlog [4, 2] are systems supporting distributed
data processing based on condition/action rules. Local-as-
view approaches are considered in a number of P2P data
management systems, e.g., Piazza [17] that also consider

richer mappings to specify views. Update propagation be-
tween views is considered in a number of systems, e.g., based
on ECA rules in Hyperion [8].
Finite-state workflows with multiple peers have been for-

malized and extensively studied using communicating finite-
state systems (called CFSMs in [1, 9], and e-compositions in
the context of Web services, as surveyed in [13, 14]). Formal
research on infinite-state, data-driven collaborative work-
flows is still in an early stage. The business artifact model
[16] has pioneered data-driven workflows, but formal stud-
ies have focused on the single-user scenario. Compositions
of data-driven web services are studied in [10], focusing on
automatic verification. Active XML [3] provides distributed
data-driven workflows manipulating XML data.
A collaborative system for distributed data sharing geared

towards life sciences applications is provided by the Orches-
tra project [11, 15]. The underlying update propagation
model among peers is based on schema mappings and is
similar to our local-as-view approach.
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